ECMO…. In the Emergency Department

John C. Greenwood, MD
Department of Emergency Medicine
University of Maryland School of Medicine
Baltimore, MD
Objectives
At the end of this presentation, the participant will be able to:
- Understand the differences between Venovenous (VV) and Venoarterial (VA) Extracorporeal membrane oxygenation (ECMO)
- Identify patients who may benefit from VA-ECMO for cardiogenic shock
- Set up an effective mechanism for ECMO initiation in the ED

“Nobody deserves to die in the hospital without a trial of ECMO”
– Dr. Daniel Herr, MD

Out-of-hospital Cardiac Arrest Review
- Out-of-hospital cardiac arrest outcomes remain poor despite advancements in ACLS protocols and with conventional CPR (C-CPR)
 - ROSC < 40%
 - Survival to discharge 7-11%\(^1\)
 - Favorable neurological outcome 3-5%\(^2\)
- Improved outcomes with
 - Therapeutic hypothermia post-ROSC \(^3,4\)
 - Rapid defibrillation\(^5\)
 - Cardiocerebral resuscitation \(^6,7,8\)
 - Rapid PCI\(^9\)
 - ECLS/ECMO Assisted CPR (E-CPR) \(?)\)

ECMO Overview
- Venovenous ECMO (VV ECMO)
 - Primary goal: Support during reversible respiratory failure
 - Indications (ARDS, severe PNA, ILD, etc.) \(^10\)
 - Refractory hypoxemia - P:F ratio< 80 for over 6 hrs
 - Refractory hypercapnia with acidemia – pH < 7.15 – 7.20
 - Excessively high P\(_{\text{PLAT}}\) >35-45 cm H\(_2\)O
 - Cannulation
 - Bicaval, dual-lumen Avelon\(^{\text{TM}}\) catheter through the right internal jugular vein (23 or 27 French)
 - Dual insertion through the right IJ and femoral vein
- Venoarterial ECMO (VA ECMO)
 - Primary goal: Support during reversible cardiac failure/shock (CS)
 - Bridge to recovery, transplantation, destination therapy, or decision
 - Indications
 - Refractory cardiogenic shock\(^{11,12}\)
 - Hypotension (SBP<80-90; MAP > 30mmHg from baseline)
 - End-organ dysfunction
 - Cardiac index < 1.8 - 2.2 L/min/m\(^2\)
 - PCWP > 18 mmHg
 - AHA: No specific hemodynamic recommendations\(^{13}\)
ECMO... In the Emergency Department
Greenwood, JC

- ESC/EATS: No specific hemodynamic recommendations
- ELSO: No specific hemodynamic recommendations

 o Cannulation
 - Central cannulation to ascending aorta performed in the OR
 - Peripheral cannulation in femoral vessels performed at the bedside
 - Catheter size: 17 Fr arterial, 21 Fr venous
 - Arterial cannula rests in distal aorta
 - Provides retrograde flow

 o Improved physiology in cardiogenic shock
 - Decreased pulmonary artery pressure
 - Increased end organ perfusion
 - Increased PaO₂ over VV ECMO

 o ECMO flow rates
 - Goal: Arterial pulse pressure ≥ 10 mmHg
 - Begin with 1.5 – 2 L/min, titrate to 3-6 L/min
 - May require vasopressor/inotropic support, goal MAP > 65

 o Additional considerations
 - Therapeutic hypothermia rapidly initiated through heat exchanger
 - Target core body temp: 32-34°C
 - Anticoagulation required
 - Unfractionated heparinization: body weight adjusted
 - Mechanical Ventilation
 - Lung protective ventilation (6-8cc/kg TV)
 - Monitor for distal limb ischemia

Extracorporeal Life Support assisted CPR (E-CPR)

- Indications
 - Down time is “brief”
 - Condition is reversible – coronary occlusion, drug induced, refractory arrhythmias
 - Condition is amenable to transplantation or revascularization

- In-hospital cardiac arrest
 - Chung et. al (2012): In-patients with acute CS treated with ECMO
 - Study: Prospective observational study of 134 patients
 - STEMI: 37 (27.6%)
 - Non-STEMI: 16 (11.9%)
 - Protocol initiated if C-CPR failed to ROSC after 30 minutes, contacted after 15 minutes
 - On pump within 25-30 min from cardiac arrest
 - **STEMI group outcomes significantly better**
 - Shin et. al (2011): In-patients with a cardiac cause of arrest
 - Improved survival to discharge
 - Improved 6-month survival with minimal neurologic impairment
 - When CPR > 30 min: E-CPR survival (19.2%) > C-CPR (1.3%)
• Out-of-hospital cardiac arrest
 o Inter-hospital variation in availability and protocol
 o Can be performed in the ED - Bellezzo et. al (2012)
 ▪ Case series
 • Staged approach to ECLS initiation
 • 18 patients – 8 patients transitioned to ECLS
 ▪ Inclusion
 • Persistent arrest despite standard efforts
 • CS (SBP < 70 mmHg) refractory to medical treatment
 ▪ Exclusion criteria
 • Asystole
 • Prolonged downtime without CPR (> 10 min)
 • Prolonged transport time (>10 min)
 • Prolonged arrest time (>10 min)
 • Suspicion of shock due to sepsis or hemorrhage
 • Pre-existing neurological disease prior to arrest
 ▪ Outcomes
 • Survival to discharge, full neuro recovery: 5 (63%)
 • Non-survivors: mean ECLS time: 48.4 hrs
 o Kagawa et. al (2012)
 ▪ Study: Retrospective review
 ▪ Inclusion: Age 18 – 74, +/- Vfib, CPR initiated < 15 min from collapse, arrest, No ROSC within 20 min of C-CPR
 • 81 ACS patients
 o 61 received intra-arrest PCI
 o 20 did not receive PCI
 ▪ Cardiac arrest followed by ECMO, PCI, and/or hypothermia
 • 30-day survival: 29%
 • Favorable neurologic outcome: 24%
 ▪ Intra-arrest PCI, time interval from collapse to pump, and in hospital cardiac arrest were associated with 30-day survival
• What does this mean to you?
 o Skeptics (Lyon RM, 2012)
 ▪ ECLS cost prohibits wide-spread adoption
 ▪ Limited data for utilization of VA ECMO in cardiac arrest, and on which patients will benefit
 o Proponents
 ▪ It is possible, data appears favorable for salvage therapy
 ▪ Goal: Bridge to revascularization or further intervention
 ▪ Algorithmic and team based result required
 ▪ Good patient selection leads to improved outcomes
Selected References

