Selecting the ‘right’ positive end-expiratory pressure level

Luciano Gattinonia,b, Eleonora Carlessob, and Massimo Cressonib

Purpose of review
To compare the positive end-expiratory pressure selection aiming either to oxygenation or to the full lung opening.

Recent findings
Increasing positive end-expiratory pressure in patients with severe hypoxemia is associated with better outcome if the oxygenation response is greater and positive end-expiratory pressure tests may be performed in a few minutes. The oxygenation response to recruitment maneuvers was associated with better outcome in patients with acute respiratory distress syndrome from influenza A (H1N1). If, after recruitment maneuver, the recruitment is not sustained by sufficient positive end-expiratory pressure, the lung will unavoidably collapse. Several papers investigated the positive end-expiratory pressure selection according to the deflation limb of the pressure–volume curve. It is still questionable whether to consider oxygenation or respiratory mechanics change as the best marker for adequate selection. A growing interest is paid to the estimate of transpulmonary pressure, although no consensus is available on which methodology is preferable. Finally, the positive end-expiratory pressure adequate for full lung opening may be computed combining the computed tomography scan variables and the chest wall elastance.

Summary
When compared, most of the methods give the same positive end-expiratory pressure values in patients with higher and lower recruitability. The positive end-expiratory pressure/inspiratory oxygen fraction tables are the only methods providing lower positive end-expiratory pressure in lower recruiters and higher positive end-expiratory pressure in higher recruiters.

Keywords
acute respiratory distress syndrome, computed tomography scan, esophageal pressure, oxygenation, positive end-expiratory pressure

INTRODUCTION
The physiology of positive end-expiratory pressure (PEEP) and its application in pulmonary edema was described by Barach \textit{et al.} in 1938 [1]; however, its widespread clinical use began with Gregory \textit{et al.} in pediatric patients [2] and became routine practice in the treatment of acute respiratory distress syndrome (ARDS) [3]. The target of PEEP application was to improve oxygenation; the concern was the cardiac output decrease, as described in detail by Cournand \textit{et al.} in 1948 [4]. The decrease of cardiac output, moreover, is a mechanism that, \textit{per se}, may improve oxygenation as described by Lemaire \textit{et al.} [5], and confirmed by Dantzker \textit{et al.} [6]. The best compromise to reconcile the oxygenation needs with the hemodynamic was described by Suter \textit{et al.} [7]. These authors found that the best oxygen transport, a variable which associates oxygenation and cardiac output, is reached when the PEEP provides the best respiratory system compliance. Suter’s PEEP selection according to oxygenation and respiratory system compliance has been rediscovered several times over the decades, up to the most recent papers.

In the 1990s, a new concept for PEEP use emerged, in the framework of ‘lung protective strategy’, starting, in our opinion, from a paper of Webb and Tierney...
SELECTING POSITIVE END-EXPIATORY PRESSURE TO IMPROVE OXYGENATION

Setting PEEP based on PEEP/FiO$_2$ tables is likely the most diffused method, introduced by the ARDS Network [12] and LOVs study [13]. Higher and lower PEEP, selected by these tables, have been compared in large trials recently reviewed in a Cochrane analysis [14]. The authors concluded that the outcome was unrelated to the PEEP level and (what a surprise!) the higher the PEEP, the higher is the oxygenation. The oxygenation response to PEEP has been studied in a secondary analysis [15] of the LOVs [13] and ExPress [16] trials and in H1N1 patients [17]. These studies reported that the relation between oxygenation response following PEEP adjustment and decreased mortality was strongest in patients with more severe baseline hypoxemia (PaO$_2$/FiO$_2$ <150 mmHg) subjected to increased PEEP. All of these data corroborate the belief that higher PEEP could be of benefit in the most severe patients with ARDS [18,19] in whom the lung recruitability (and PEEP response) is higher [20]. It is important to note that oxygenation response to PEEP changes may be tested in a few minutes [21].

SELECTING POSITIVE END-EXPIATORY PRESSURE TO PROTECT THE LUNG

Setting a PEEP value sufficient to keep the lung open throughout the respiratory cycle is one of the main issues of the ‘lung protective strategy’. Several approaches have been proposed through the years for this purpose, from the traditional use of the volume–pressure curve to the use of transpulmonary pressure and the imaging technologies.

Respiratory mechanics-based positive end-expiratory pressure selection: the volume–pressure curve of the respiratory system

The volume–pressure curve has been largely used to individualize the PEEP selection hypothesizing that the lower inflection point indicates the end of recruitment, whereas the upper inflection point indicates the beginning of hyperinflation. Although, for decades, the PEEP was set using the inflation limb of the respiratory system curve, more recently the attention has been focused on the deflation limb. At the same pressure, the inspiratory volume is lower than the expiratory one, and, conversely, the pressure required to reach a given volume is greater along the inspiratory limb than along the expiratory one. The ‘extra pressure’ required during the inflation is dissipated in the system to overcome the surface tension and the tissue resistances and, eventually, to open up the collapsed lung regions.

The inspiratory limb of the volume–pressure curve: the recruitment maneuver

In contrast with previous beliefs, it has been shown consistently, in humans [22] and in different animal species [23,24], that recruitment is not limited to the pressure around the inflection point of the inspiratory volume–pressure curve but occurs along the entire curve. This indicates that the collapsed units open up at different opening pressures. As an example, at the inflation of 30 cmH$_2$O, a consistent part of the potentially recruitable lung, which may
be estimated from 15% to 30%, remains closed. To open up these regions, opening pressures spanning from 30 to 45–60 cmH2O are required [22,25]. Therefore, the recruitment maneuver may open up different amounts of recruitable lung if performed at 30, 40 or 60 cmH2O inflation pressure. Liu et al. [17] reported that, if the recruitment maneuver (at 30 cmH2O for 60 s) resulted in better oxygenation, the patients with influenza A (H1N1)-associated ARDS had a better chance of survival. The same group [26] found, in a canine model, that hyperinflation after recruitment maneuver was greater in the surfactant model rather than in the oleic acid model. Engel et al. [27] compared two recruitment maneuvers (at 45 and 15 cmH2O PEEP) with no recruitment. These authors concluded that recruitment maneuvers improve oxygenation with less hemodynamic impairment and inflammatory reaction at lower PEEP. Actually, the authors defined as recruitment the application of two different PEEP levels, which are expiratory phenomena related to the deflation limb of the volume–pressure curve. This fact underlines the confusion originating by concepts such as ‘recruitment with PEEP.’ Actually, recruitment occurs during inspiration and PEEP maintains open, if sufficient, what has been previously recruited. If the PEEP is insufficient, the recruitment is not sustained and the lung will unavoidably collapse again, as confirmed by Kheir et al. [28]. Keenan et al. [29], reviewing the recruitment issue, wisely concluded, in our opinion, that recruitment maneuvers should be guided by individual clinician experience and patients’ factor.

Therefore, although the recruitment must be tailored on the inspiratory limb of the volume–pressure curve, tailoring PEEP in the same limb is misleading. Hata et al. [30–33] provided a systematic review of three randomized trials that used the inflation limb of the pressure–volume curve to tailor PEEP selected above the lower inflection point. The authors suggested a possible outcome benefit, although the limited number of patients prevents any real conclusion. In our opinion, in all of these studies, there is a fundamental bias. First, the authors assume that recruitment is complete or near complete above the lower inflection point, which is not true; second, when the lower inflection point cannot be identified, a PEEP approximately 15–16 cmH2O was used. To be consistent with the hypothesis, PEEP should have been set equal to 0 cmH2O.

The expiratory limb of the volume–pressure curve
In the last few years, several papers investigated the effects of PEEP selection on the deflation part of the volume–pressure curve, usually setting PEEP at the pressure values corresponding to the best compliance or before the oxygenation decrease. It must be noted, however, that, first, because of the sigmoid shape of the deflation limb, the compliance is always higher in the middle part of the lung, even in normal lungs. Second, the derecruitment starts, in ARDS, at very high deflation pressures (20 cmH2O), as shown by the closing pressure curve, both in humans and in experimental animals [22,23], to continue at lower pressures along the deflation limb. Actually, in supine patients with ARDS, when PEEP is decreased, the most dependent lung regions along the sternum–vertebral direction collapse first and then the less dependent regions, as shown with the regional computed tomography (CT) scan analysis [34], and recently confirmed in 51 patients with ARDS [35*]. This makes the use of a single unique pressure point as a marker of derecruitment highly questionable. How the commonly used physiological variables are different if measured at the same pressure during inflation or during deflation has been recently emphasized by Bikker et al. [36].

The lung mechanics-based positive end-expiratory pressure selection
The interest in ventilator-induced lung injury and the stress/strain applied to the lung structures renewed the attention on the esophageal pressure measurement and its clinical use in the framework of the lung protective strategy. Moreover, the use of CT scan allowed a better characterization of the lung status and the individualization of the mechanical ventilation settings.

The transpulmonary pressure-based positive end-expiratory pressure selection
The recognition that the distending pressure of the lung is the transpulmonary pressure led to a series of studies in which the PEEP level was selected to maintain the transpulmonary pressure positive through the whole respiratory cycle, to maintain the lung always open. Because the transpulmonary pressure is the difference between the airway and the pleural pressure, the estimate of this variable is mandatory and the only clinical tool available is the measurement of the esophageal pressure.

The indications and the limits of using esophageal pressure as a surrogate of pleural pressure have been reviewed by Brochard [37*] and by Keller and Fessler [38]. Two approaches have been proposed to estimate the pleural pressure from the esophageal pressure measurement. The first one assumes that the absolute values of esophageal pressure equal the pleural pressure. To take into account the weight of
Choosing the ‘right’ PEEP level Gattinoni et al.

The computed tomography scan-based positive end-expiratory pressure selection

The assumption behind the CT scan-based PEEP selection is that the primary reason for lung collapse in ARDS is the excessive lung weight that compresses the dependent lung regions. Therefore, the CT scan-derived PEEP is computed as the pressure sufficient to overcome the maximal hydrostatic pressure superimposed on the most dependent lung regions and the pressure necessary to lift up the chest wall [35*]. Cressoni et al. found, however, that, in severe ARDS, the CT scan-derived PEEP ranged from 7 to 28 cmH₂O, averaging 16 ± 5 cmH₂O in mild ARDS, 16 ± 5 cmH₂O in moderate ARDS and 18 ± 5 cmH₂O in severe ARDS, and was unrelated to the lung recruitability, that is, to keep open 1 or 100 pulmonary units collapsed in the dependent lung regions, approximately the same PEEP is required.

Comparison between different modes of positive end-expiratory pressure selection

In the last years, several papers compared different PEEP selection methods. In Table 1, we summarize the methods in comparison, their targets, and the authors’ conclusions. Briefly, Chiumello et al. found that, within all of the bedside PEEP selection methods tested, the only one that provides appropriately lower PEEP in the less recruitable patients was the high PEEP arm of the ARDSNet table. All of the other systems, including the CT-derived PEEP, provide similar values in patients with higher or lower potential for lung recruitment. Other authors, instead of recruitability, targeted PEEP to other variables. Yang et al. found that better oxygenation was provided by applying a positive transpulmonary pressure than following the ARDSNet table. Huang et al., during a decremental PEEP trial, measured stress index, static lung compliance, oxygenation and the inflection point in the inspiratory limb of the volume–pressure curve. These authors concluded that stress index and oxygenation methods set PEEP at higher values than indicated by the highest compliance and the inflection point. In turn, Pintado et al. found that the best compliance method, compared with the ARDSNet table, resulted in decreased organ dysfunction with a trend toward a better outcome. In addition to respiratory system compliance and transpulmonary pressure during decremental PEEP trial, Rodriguez et al. found that alveolar dead space could add further information; in fact, it increased when transpulmonary pressure became negative and oxygenation deteriorated. In a series of papers, in humans [49] and in pigs [36,45], during the PEEP changes, in addition to the usual variables such as dynamic compliance, transpulmonary pressure, oxygenation parameters and dead space, the electrical impedance tomography was applied. As expected, all of these studies showed that, when applying PEEP, we have unavoidably to compromise between regional overdistension and regional collapse. Finally, in postoperative patients, Ferrando et al. [47] found advantages setting PEEP during a decremental PEEP trial according to the best compliance instead of using a constant value equal to 5 cmH₂O PEEP, whereas Hansen et al. [48], in cardiovascular patients, found that 8 cmH₂O PEEP was substantially similar to 5 cmH₂O PEEP.

It is evident that the different methods do provide different PEEP values as they explore different properties of the system. The target of the oxygenation method is to provide an oxygen saturation approximately 90% without negative hemodynamic effects. The PEEP level to reach this target is usually lower than the one required for mechanical targets, because the complete opening of the lung is not necessary. The stress index and the ExPress study methods aim to sustain a complete recruitment by setting PEEP approximately at the level of the upper inflection point of the inspiratory volume–pressure curve, where it loses its linearity. The healthier the lung, however, the higher is the pressure set with these two methods [40*]. Using the deflation part of the volume–pressure curve is physiologically sound, but the variable to be considered for setting PEEP is questionable. Some authors proposed as a signal of derecruitment the decrease of oxygenation. This is not necessarily true because the changes in intrathoracic pressure are associated with changes in hemodynamics, which may influence oxygenation changes [5,6]. In contrast, some authors consider the decrease in respiratory system compliance as the beginning of derecruitment. Even in normal lung, however, the compliance during deflation first increases, then
Table 1. Positive end-expiratory pressure selection methods reported in recent literature

<table>
<thead>
<tr>
<th>Author</th>
<th>Population</th>
<th>PEEP selection method</th>
<th>Targets</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiumello et al.[35*,40*]</td>
<td>Patients with ARDS</td>
<td>Increased recruitment strategy of the ExPress study</td>
<td>Airway pressure up to 28–30 cmH₂O or PEEP = 20 cmH₂O at constant tidal volume 6 ml/kg IBW</td>
<td>PEEP/FiO₂ table is the only method providing appropriately lower/higher PEEP in lower/higher recruiters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stress index</td>
<td>PEEP at which the time–pressure curve loses its linearity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Esophageal pressure</td>
<td>PEEP was set equal to the absolute value of esophageal pressure measured at functional residual capacity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOV study</td>
<td>PEEP selected according to a PEEP/FiO₂ table, targeting SaO₂ between 88% and 93%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CT-derived</td>
<td>PEEP = maximal superimposed pressure</td>
<td></td>
</tr>
<tr>
<td>Yang et al. [41]</td>
<td>Patients, with and without IAH</td>
<td>Transpulmonary pressure Transpulmonary pressure [0–10 cmH₂O at end expiration, according to a sliding scale based on (P_{aO_2}) and (FiO_2]]</td>
<td>Transpulmonary pressure method provided higher PEEP than PEEP/FiO₂ table with better oxygenation and respiratory mechanics</td>
<td></td>
</tr>
<tr>
<td>Gulati et al. [39*]</td>
<td>Patients with ARDS</td>
<td>Pes-based method</td>
<td>End-expiratory transpulmonary pressure of 0 cmH₂O End-inspiratory transpulmonary pressure of 26 cmH₂O</td>
<td>Absolute esophageal pressure or chest wall compliance method to set transpulmonary pressure does not yield similar results</td>
</tr>
<tr>
<td>Huang et al. [42]</td>
<td>Pulmonary patients with ARDS</td>
<td>Oxygenation</td>
<td>PEEP decremented until (P_{aO_2}/FiO_2) < 400 mmHg or >5% difference in (P_{aO_2}/FiO_2) between two consecutive PEEP reduction</td>
<td>PEEP titration by stress index might be more beneficial for pulmonary patients with ARDS after a recruitment maneuver</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stress index</td>
<td>Optimal PEEP was set to obtain a stress index value between 0.9 and 1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cst</td>
<td>PEEP was reduced in steps of 2 cmH₂O starting from 20 cmH₂O, until the lowest PEEP level providing the maximal Cst</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LIP + 2 cmH₂O</td>
<td>Optimal PEEP = LIP + 2 cmH₂O</td>
<td></td>
</tr>
<tr>
<td>Pintado et al. [43]</td>
<td>Patients with ARDS</td>
<td>Compliance-guided PEEP</td>
<td>The highest static compliance was considered to be the best PEEP during an incremental trial. If at two different PEEPs the static compliance was identical, the one with the lowest plateau was chosen</td>
<td>PEEP setting by highest compliance is better than by PEEP/FiO₂ table to decrease organ dysfunction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARDSNet protocol</td>
<td>PEEP selected according to a PEEP/FiO₂ table</td>
<td></td>
</tr>
<tr>
<td>Rodriguez et al. [44]</td>
<td>Patients with ARDS</td>
<td>Crs</td>
<td>The best Crs PEEP was defined as the highest value of PEEP producing the higher Crs during the decremental titration maneuver</td>
<td>Negative values of transpulmonary pressure during decremental PEEP are associated with increased (VD/VT) and high risk of collapse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transpulmonary pressure Dead space</td>
<td>The PEEP value corresponded to an expiratory Ptp of 0</td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Group Description</td>
<td>Methods</td>
<td>Results/Conclusions</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>--------------------------------</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
| Blankman et al. | Postcardiac surgery patients | Dynamic compliance PaO2/FiO2 ratio EIT | Decremental PEEP trial. An even distribution of tidal volume to the nondependent and dependent lung regions Decremental PEEP trial. Highest value Decremental PEEP trial. Highest value
| Bikker et al. | Pigs (healthy and after ALI induction) | Crs EELV Transpulmonary pressure PaO2 Dead space Shunt Electrical impedance | Best PEEP at maximum compliance Best PEEP at maximum EELV Best PEEP was defined at transpulmonary pressure equal to or exceeding zero during end expiration Best PEEP at maximum PaO2 Best PEEP at lowest dead space Best PEEP at lowest shunt Minimal lung collapse and overdistension
| Wolf et al. | Pigs (ARDS) | ARDSNet protocol Electrical impedance | PEEP selected according to a PEEP/FiO2 table Regional EIT-derived compliance was used to maximize the recruitment of dependent lung and minimize overdistension of nondependent lung areas
| Ferrando et al. | Patients undergoing thoracic surgery | Dynamic compliance 5 cmH2O | PEEP decrement trial at 2 cmH2O steps until the maximal dynamic compliance was obtained During one-lung ventilation, best compliance method is better than 5 cmH2O PEEP to preserve oxygenation and lung mechanics
| Hansen et al. | Mechanically ventilated patients after isolated coronary artery bypass grafting or combined CABG and valve operations | 5 cmH2O 8 cmH2O | The use of 8 cmH2O PEEP instead of 5 cmH2O does not seem beneficial
| Mauri et al. | Patients recovering from ARDS after switch to pressure support ventilation | Clinical PEEP (7 ± 2 cmH2O) Clinical PEEP + 5 cmH2O | More homogeneous distribution by EIT Higher PEEP and lower pressure support provides more homogeneous ventilation and, possibly, better ventilation/perfusion matching

The table summarizes the results of recent studies comparing different PEEP selection methods. It reports the methods compared, their targets and the authors’ conclusions. ALI, acute lung injury; ARDS, acute respiratory distress syndrome; CABG, coronary artery bypass graft; Crs, respiratory system compliance; Cst, static pulmonary compliance; CT, computed tomography; Ecw, chest wall elastance; EELV, end-expiratory lung volume; EIT, electrical impedance tomography; FiO2, inspiratory oxygen fraction; IBW, ideal body weight; ITV, intratidal gas distribution; LIP, lower inflection point; PEEP, positive end-expiratory pressure; Pes, esophageal pressure; Ptp, transpulmonary pressure; SaO2, arterial oxygen saturation; VD/Vt, dead space.
stays constant and, then, decreases again, according to the sigmoid shape of the volume–pressure curve, independent of recruitability. The use of positive transpulmonary pressure as a guide for PEEP selection assumes that esophageal pressure equals the pleural pressure. Unfortunately, in our opinion, this assumption is far from true, because the esophageal pressure is highly positive in most patients with ARDS, which, according to the theory, should have their lung completely collapsed, sometimes even at the end of inspiration. The changes of esophageal pressure, in contrast, better reflect the changes of pleural pressure. Therefore, useful information can be acquired to judge the real distending pressure of the lung once the chest wall compliance has been estimated. Finally, the CT-derived PEEP is physiologically appealing, but we do not have any proof that it should be used as a guide for therapy. It simply tells us that in ARDS, from mild to severe, if we want to keep the whole lung completely open, either a few or hundreds of units, approximately the same pressure must be used. There is no clinical sense, in our opinion, to use high pressure either in patients with higher recruitability or in patients with lower recruitability, and, unfortunately, the CT scan-derived PEEP is unrelated to recruitability.

CONCLUSION

‘The best PEEP’ does not exist. To pretend and claim that we may find a PEEP level that avoids intratidal recruitment—derecruitment, providing, in the meantime the best compliance, best oxygenation and lowest dead space, without causing hyperinflation and affecting hemodynamics, reflects a wishful dream that has nothing to do with the reality. Therefore, in our opinion, we should use a ‘better PEEP’ approach as a reasonable compromise among oxygenation, hemodynamics status and intratidal opening and closing. Because the latter phenomenon depends quantitatively on the lung recruitability, which is a function of the lung severity, the best compromise should be the use of higher PEEP in severe ARDS (range 15–20cmH2O), lower PEEP in mild ARDS (range 5–10cmH2O) and intermediate in moderate ARDS, paying attention to the chest wall elastance and hemodynamic impairment [50]. This pragmatic approach [50], supported by decades of studies and experience, is likely as effective as the more laborious PEEP trials that do not provide, at the end, anything else than reported range of values.

Acknowledgements

None.

Financial support and sponsorship

None.

Conflicts of interest

The authors do not have conflicts of interest.

REFERENCES AND RECOMMENDED READING

Papers of particular interest, published within the annual period of review, have been highlighted as:
- of special interest
- of outstanding interest

12. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the a...
41. Only the PEEP selected by the ‘high PEEP’ arm of the LOV study is appropriately lower or higher in patients with lower or higher recruitability.