Modern Management of Cardiac Arrest
Guest: Dr. Joshua Reynolds

Background
- > 500,000 adults and children experience cardiac arrest (CA) annually in the US.
- CA claims more lives than colorectal cancer, breast cancer, prostate cancer, influenza, pneumonia, auto accidents, HIV, and firearms combined.
- Only 5% to 15% survive to hospital DC.

Hemodynamic-Directed Resuscitation
- ROSC and survival after CPR are dependent upon restoring myocardial blood flow.
- Coronary perfusion pressure (CPP) during relaxation phase of CPR is the primary determinant of myocardial blood flow.
- CPP = Aortic diastolic pressure – right atrial pressure
 1) Arterial line + central venous line
 a. Target CPP > 20 mm Hg
 b. Optimal CPP not established
 2) Arterial line only
 a. Target diastolic blood pressure > 25 mm Hg
 b. Improve quality of CPR or give vasopressors
 3) Capnography only
 a. Target ETCO2 > 20 mm Hg

- There are no human trials studying the optimal titration of these parameters
- Take Home Point: focus CA resuscitation on CPP

High-Quality CPR
- Background
 - The cornerstone of cardiac arrest resuscitation
 - Patient survival linked to quality of CPR
 - Goal is to deliver oxygen/substrate to vital tissues
 - Provides only 10-30% of normal coronary flow; 30-40% of normal cerebral flow
 - Providers frequently deliver compressions that are too slow, too shallow, and don’t allow for complete recoil
- Critical components
 - Chest compression fraction (CCF)
 ▪ CCF = proportion of time compressions are performed during arrest
 ▪ Target > 80%; lower CCFs assoc with decreased ROSC and survival to DC
 ▪ Minimize interruptions!
● Team Leader
 ○ Communicate clearly about impending pauses - direct team to perform simultaneous actions during pause

● Pulse checks
 ○ Manual palpation unreliable and results in long pause
 ○ Not recommended as a means of monitoring the effectiveness of CPR

● Airway
 ○ Optimal time for insertion of advanced airway unknown
 ○ Consider supraglottic airway or passive oxygenation
 ○ First attempt laryngoscopy during compressions; if unsuccessful, attempt to intubate in < 10 seconds

● Perishock pauses
 ○ Minimize preshock pauses
 ▪ Survival significantly lower for patients with preshock pause > 20 secs compared to preshock pause < 10 secs
 ▪ 18% reduction in survival for every 5 sec increase in preshock pause
 ○ Charge the defibrillator during compressions
 ○ Hands-on defibrillation?
 ○ Restart compressions immediately after shock and deliver for 1-2 min before postshock rhythm analysis

 ○ Rate
 ▪ AHA/ECC Guidelines recommend compression rate ≥ 100 /min
 ▪ Optimum target likely 100-120 /min
 ○ Depth
 ▪ Guidelines recommend compression depth ≥ 2 inches (50 mm) in adults; improved defibrillation success and ROSC
 ▪ Numerous studies demonstrating providers do not compress chest deep enough; depth < 38 mm associated with decreased ROSC/survival.
 ○ Chest Recoil
 ▪ Allow the chest to fully recoil
 ○ Animal data: improves MAP, CPP, myocardial blood flow
 ○ No studies in humans
 ▪ Avoid leaning: increases RA pressure, decreases cerebral and coronary perfusion, and decreases LV myocardial flow

● Mechanical CPR Devices
 ○ Theory: offers improved quality compressions while allowing defibrillation
 ▪ Meta-analysis
 ▪ Examines rates of ROSC from load-distributing band and piston-driven devices compared with manual CPR.
 ▪ 12 studies (6,538 patients; 1,824 with ROSC)
 ○ 8 load-distributing devices
- 4 piston-driven devices
 - Results
 - No benefit observed for piston-driven devices
 - 1 observational study demonstrated improved outcome for load-distributing device
 - Pragmatic, cluster-randomized, open-label trial of adults with non-traumatic OHCA in the UK.
 - Objective: determine if the introduction of the LUCAS-2 mechanical CPR into EMS response vehicles would improve survival over manual CPR.
 - Study
 - Patients
 - Adults > 18 years of age
 - Non-traumatic OHCA
 - Primary outcome: 30-day survival
 - Results
 - 4471 patients
 - 1652 assigned to LUCAS-2 device (638 did not receive)
 - 2819 assigned to the control group
 - 30-day survival
 - LUCAS-2 group: 6%
 - Control group: 7%
 - Take Home Point: no statistical difference in survival with mechanical devices.

Defibrillation
- Biphasic vs. monophasic devices: no difference in survival
- Deliver single shock then resume compressions before rhythm analysis

Airway & Ventilation
- Airway
 - Optimal timing of advanced airway placement is unknown
 - Prolonged attempts at airway management lead to interrupted compressions.
 - Consider delayed intubation, passive oxygen delivery via NRB mask during first few minutes of arrest.
 - Supraglottic airways: data is mixed regarding outcomes.
 - Use ETCO2 waveform capnography to confirm placement.
- Oxygenation
 - Administer 100% FiO2, though animal data indicates 100% FiO2 may result in worse outcomes compared with room air.
- Ventilations
 - Goal – provide sufficient oxygen without impeding perfusion during CPR
 - Positive-pressure ventilation lowers cardiac output and reduces CPP during CPR
 - Metabolic demands for oxygen are decreased in the arresting patient
 - Current recommendations: 8 – 10 bpm
 - Ventilate to produce no more than visible chest rise
End-tidal CO2

- CO2 levels can reflect tissue production, cardiac output, and ventilation
 - P – Position of the tube
 - Capnography superior to auscultation and capnometry
 - Q – Quality of CPR
 - Monitor for signs of fatigue in rescuer – drop in levels
 - R – ROSC
 - Sudden increase to normal (35-40 mm Hg) reliable indicator of ROSC
 - S – Strategy
 - Reduced levels described in patients with PE, tension PTX, and hemorrhage
 - T – Termination
 - ETCO2 < 10 mm Hg after 20 min predicts unsuccessful resuscitation.
 - Current data insufficient for specific cut-off values at certain time intervals.

Vasopressors

- Rationale: vasopressors increase aortic pressure w/o concomitant increase in RAP, thereby improving both coronary and cerebral perfusion pressure.
- Epinephrine reported to cause:
 - Decreased microcirculatory cerebral blood flow
 - Increased myocardial oxygen consumption
 - Increased post-defibrillation ventricular arrhythmias
 - Increased post-ROSC myocardial dysfunction
- Olasveengen TM, et al. JAMA 2009
 - Prospective, RCT of consecutive adults with OHCA in Oslo, Norway
 - Objective: determine whether removing IV drug administration from ACLS would improve survival to hospital DC after OHCA
 - Results
 - 851 patients (418 in ACLS group; 433 in no IV drugs group)
 - No statistical difference in survival to hospital DC or long-term survival
 - Double-blind, randomized, placebo-controlled trial of epinephrine in OHCA
 - Objective: determine the effect of epinephrine on patient survival to hospital DC
 - Results
 - 601 patients
 - ROSC 8.4% vs. 23.5% for those who got epinephrine
 - Survival to hospital DC 1.9% vs. 4% (not statistically significant)
 - Prospective, nonrandomized, observational propensity analysis of OHCAs occurring in Japan
 - Objective: evaluate the association between epinephrine use before hospital arrival and short- and long-term survival
 - Results
417,188 patients
- ROSC: 18.5% in the epinephrine group vs. 5.7% in no epi group
- Negative association between prehospital epi use and long-term mortality (adjusted OR 0.46)

 - Systematic review
 - 53 articles evaluating:
 - Any vasopressor to placebo
 - Vasopressin (w/ or w/o epinephrine) to epinephrine
 - High-dose epinephrine to standard dose epinephrine
 - Alternative vasopressors to epinephrine
 - Results
 - Epinephrine associated with improved rate of ROSC
 - No long-term benefit demonstrated
 - Alternative vasopressors (dopamine, phenylephrine, norepinephrine) provide no long-term survival benefit

 - Background
 - International guidelines recommend epinephrine every 3-5 minutes during cardiac arrest resuscitation.
 - However, epi may have adverse effects during post-resuscitation phase and contribute to myocardial dysfunction.
 - Objective: evaluate relationship between epinephrine and survival among cohort of patients with ROSC from out-of-hospital cardiac arrest.
 - Study
 - Observational cohort study
 - All patients with nontraumatic OHCA who achieved ROSC and were admitted to a large, single center in Paris.
 - Primary outcome: favorable neurologic outcome (CPC of 1 or 2) at discharge.
 - Results
 - 1556 patients
 - 1134 (73%) received epinephrine
 - Older
 - Less likely to have witnessed arrest
 - Less likely to present with shockable rhythm
 - Longer duration of resuscitation
 - 422 (27%) did not get epinephrine
 - PCI performed in 44%, hypothermia performed in 70%
 - Survival
 - Epinephrine group: 193/1134 (17%)
 - No epinephrine group: 255/422 (60%)
 - Epinephrine use was negatively associated with favorable neurologic survival (adjusted OR 0.32).
 - Adverse association of epinephrine persisted across subgroups defined by initial rhythm, length of resuscitation, and post-arrest care.
Patients who received epinephrine within first 9 min of arrest had a better outcome (aOR 0.54) than those who received between 10-15 min (aOR 0.33).

Limitations: observational design, single center

Combinations

- Mentzelopoulos SD, et al. JAMA 2013
 - Randomized, double-blind, placebo-controlled, parallel-group trial
 - Objective: to determine whether the combination of vasopressin-epinephrine-corticosteroids during and after CPR improved survival to hospital DC in IHCA patients.
 - Results
 - 268 patients (VSE group: 130; control group: 138)
 - VSE group had higher probability for ROSC and survival to hospital DC with good neurologic outcome (13.9% vs. 5.1%)

Take Home Points

- No definitive evidence that any vasoactive drugs improve long-term survival.
- No definitive evidence that any antiarrhythmic (i.e., amiodarone) has improved survival to hospital DC.

Unproved Therapies

- Calcium
 - Theory: acidosis during cardiac arrest may cause hypocalcemia that, if corrected, it may restore cardiac function during arrest.
 - Systematic review
 - 10 articles (2 RCTs); most studies rated as ‘fair’ quality
 - No evidence that calcium in cardiac arrest resuscitation improves survival regardless of presenting rhythm
 - Consider in cases of hyperkalemia, hypocalcemia, calcium channel blocker overdose, hypermagnesemia

- Thrombolytics
 - Theory: large % of patients with OHCA are due to ACS or PE
 - Double-blind, multicenter trial in adults with OHCA
 - Randomized to tenecteplase or placebo
 - Primary outcome: 30-day survival
 - Results
 - 1050 patients (525 to tenecteplase)
 - 30-day survival
 - Tenecteplase group: 14.7%
 - Placebo group: 17%
 - Trial terminated early for no benefit

- Active Compression-Decompression CPR
 - Active compression-decompression CPR uses a device with a suction cup to perform CPR; differs from traditional CPR where chest is allowed to passively recoil.
 - Initial small studies demonstrated possible improvement in mortality and neurologic injury.
- Systematic review
- 10 trials (8 OHCA, 1 INHCA, 1 both)
- OHCA – 4162 patients
- No difference in mortality or neurologic impairment between ACDR CPR and standard CPR.

Aminophylline
- Bradyasystole is most common initial rhythm in OHCA.
- Survival from ‘nonshockable’ rhythms is very poor (< 3%).
- Theory: aminophylline believed to counteract the effects of endogenous adenosine and may lead to improved survival.
 - Systematic review of all RCTs comparing IV aminophylline with administered placebo in adults with non-traumatic, normothermic, bradyasystolic cardiac arrests.
 - 5 trials (1254 patients; risk of bias low in 4 studies)
 - Aminophylline had no effect on survival to hospital admission, ROSC, or survival to DC.

Refractory Cardiac Arrest - Novel Therapies

Definition
 - Retrospective cohort study of cardiac arrest database (ROC) at single center (Pittsburgh site)
 - Objective: to determine the duration of CPR after which repeated traditional interventions cease to result in meaningful survival.
 - Study
 - Patients
 - Adults > 18 years of age with non-traumatic OHCA
 - Received chest compressions from professional provider or rescue shocks
 - Primary endpoint: survival to hospital DC with favorable neurologic status (mRS 0-3)
 - Results
 - 1014 patients
 - 47% achieved ROSC, 11% survived to hospital DC, 6% had a favorable functional status
 - 90% of patients who had favorable neurologic status at hospital DC had ROSC within 16 minutes
 - Limitations: single center, retrospective cohort of database
 - Take Home Points
 - Conventional resus strategies most effective w/in 10-15 min.
 - After 15 min, prob. of good functional recovery falls to < 2%.

ECLS
- Background
 - Literature on ECLS for refractory cardiac arrest present since 1980s
 - Most of literature for OHCA limited to small case series/case reports often comparing to historical controls.
- **Kagawa, et al. Circulation 2012**: 42 pts, 21% survival with good neurologic outcome
- **Maekawa, et al. Crit Care Med 2013**: 53 pts; 32% survival
- **Leick, et al. Clin Res Cardiol 2013**: 28 pts; 39% survival
- Large randomized controlled trials have not yet been completed
- Extracorporeal Life Support Organization Registry
 - Over 5600 patients received ECLS for cardiac arrest
 - 1657 received ECPR: 28% survival to hospital DC
- Growing body of literature on use of ECLS in ED
 - **Bellezzo JM, Shinar Z, et al. Resuscitation 2012**: 18 patients, 8 survived to hospital DC, 5 neurologically intact

Recent Literature

 - Objective: How does ECPR effect neurologic outcomes for patients with OHCA
 - Study: prospective observational study of 46 facilities in Japan (26 assigned to ECPR, 20 assigned to CPR)
 - Inclusion
 - Adults 20 – 75 years of age
 - VF/VT on initial ECG
 - CA on hospital arrival w/ or w/o pre-hospital ROSC
 - Arrival to ED within 45 min from 911 call
 - No ROSC at least during the 15 min after hospital arrival
 - Outcome: Favorable neurologic status (CPC 1 or 2) at 1 month and 6 months after CA
 - Results - 454 patients (234 in ECPR; 159 in CPR)
 - 1 m favorable outcomes (12.3% ECPR vs. 1.5% in CPR)
 - 6 m favorable outcomes (11.2% in ECPR vs. 2.6% in CPR)
 - Limitations
 - Differences in care between facilities
 - TH: 91.5% in ECPR vs. 54%
 - IABP: 92.7% in ECPR vs. 62.2%
 - Coronary angio: 89% in ECPR vs. 68%
 - Non-randomized study
- **Stub D, et al. The CHEER trial. Resuscitation 2014**
 - Study: prospective, pilot study from single center in Melbourne, Australia (The Alfred Hospital)
 - Patients (OHCA + IHCA)
 - OCHA
 - Aged 18-65 years
 - Cardiac arrest due to suspected cardiac etiology
 - CPR w/in 10 min by bystanders or EMS
 - Initial rhythm of VF
 - Mechanical CPR machine
 - Protocol
Eligible after 30 min of persistent cardiac arrest
- 2L iced saline infused with mechanical CPR device
- Intubated with 100% FiO2
- Epinephrine 1 mg every 4 min
- ECMO
 - 2 CCM physicians
 - Cannulated femoral artery and vein
 - Heparin bolus, blood flow at 3L/min with oxygen gas flow 3L/min
 - MAP of 70 mm Hg targeted with epi infusion
- Transported to the cardiac catheterization lab

● Results
 - 26 patients (11 OHCA and 15 IHCA)
 - Initial rhythm VF in 11 OCHA
 - Underlying cause of arrest ACS in 73%
 - Median time from collapse to ECMO initiation: 56 min
 - ROSC: 92%
 - Survival to hospital DC: 56%
 - 5/11 (45%) for OHCA
 - All survivors DC with full neurologic recovery

● Complications
 - Blood transfusion required in 69%
 - Vascular surgery required in 42% - fem artery repair; arterial backflow cannula placement, ischemic limb

- Study: analysis of single center prospective registry (U Penn)
- Objective: describe the institution’s experience with ECLS as a rescue strategy in adults with OHCA.

● Patients
 - Age 18-70
 - Witnessed arrest (out-of-hospital, in the ED, or shortly after arrival to inpatient unit or cardiac cath lab)
 - Bystander initiated CPR
 - VF or VT as initial rhythm or obvious cardiac cause
 - Collapse to EMS arrival < 15 min

● Results
 - 26 patients (15 OHCA, 5 in the ED, 3 after arriving to inpatient unit, 3 en route for transfer)
 - 42% with VF or pulseless VT
 - Average time from arrest to initiation of ECLS: 77 min
 - All patients cannulated via the femoral artery, femoral vein, or internal jugular vein
 - 4 patients (15%) survived to DC; 3 neurologically intact
 - 69% suffered complications: ischemia to lower extremity, stroke, hemorrhage, and organ failure.

● Limitations
 - Retrospective, observational case series
 - Protocol developed largely by consensus
- Low rate of VF/pulseless VT as initial rhythm
- Low rates of bystander CPR

- ECLS Take Home Points
 - No RCT or universally accepted protocol
 - Resource intensive therapy
 - Best outcomes appear to be adults with witnessed arrest, bystander CPR w/in minutes, shockable rhythm, short EMS transport time, short time to initiation of ECMO, rapid cooling once ECMO initiated, and emergent cardiac catheterization.
 - High rate of complications: hemorrhage, ischemia to lower extremity, and arterial injuries.

- Esmolol
 - Patients in cardiac arrest have high levels of endogenous and exogenous epinephrine.
 - The β_1 and β_2 effects of epinephrine can increase myocardial oxygen requirements, worsen ischemic injury, lower VF threshold, worsen post-ROSC myocardial function
 - Objective: compare outcomes of patients who received esmolol to those who did not during refractory VF arrest in the ED.
 - Study
 - Retrospective, observational, analysis
 - Single, urban, academic county hospital (Hennepin County Medical Center)
 - Patients
 - Initial rhythm of VF or pulseless VT
 - CA in the ED or prehospital setting and remained in CA in ED
 - Received at least 3 defibrillation attempts
 - Got 300 mg amiodarone and 3 mg epinephrine
 - Had manual CPR by EMS followed by automated CPR with LUCAS device
 - All intubated
 - Results
 - 25 patients (6 received esmolol)
 - Esmolol group
 - All achieved temporary ROSC
 - 4 of 6 achieved sustained ROSC; all taken to Cath Lab
 - 3 of 6 survived to DC with good neurologic outcomes
 - No esmolol group
 - 8 of 19 achieved temporary ROSC
 - 6 survived to ICU admission
 - 2 survived to DC with good neurologic outcomes
 - Limitations: retrospective, small sample size

References:
12. Reynolds JC. Modern management of cardiac arrest.