
ECMO.... In the Emergency Department

John C. Greenwood, MD Department of Emergency Medicine University of Maryland School of Medicine Baltimore, MD

<u>Objectives</u>

At the end of this presentation, the participant will be able to:

- Understand the differences between Venovenous (VV) and Venoarterial (VA) Extracorporeal membrane oxygenation (ECMO)
- Identify patients who may benefit from VA-ECMO for cardiogenic shock
- Set up an effective mechanism for ECMO initiation in the ED

"Nobody deserves to die in the hospital without a trial of ECMO" – Dr. Daniel Herr, MD

Out-of-hospital Cardiac Arrest Review

- Out-of-hospital cardiac arrest outcomes remain poor despite advancements in ACLS protocols and with conventional CPR (C-CPR)
 - ROSC < 40%
 - Survival to discharge 7-11 $\%^1$
 - Favorable neurological outcome $3-5\%^2$
- Improved outcomes with
 - Therapeutic hypothermia post-ROSC ^{3,4}
 - Rapid defibrillation⁵
 - Cardiocerebral resuscitation ^{6,7,8}
 - Rapid PCI⁹
 - ECLS/ECMO Assisted CPR (E-CPR) (?)

ECMO Overview

- Venovenous ECMO (VV ECMO)
 - Primary goal: Support during reversible *respiratory* failure
 - Indications (ARDS, severe PNA, ILD, etc.)¹⁰
 - Refractory hypoxemia P:F ratio< 80 for over 6 hrs
 - Refractory hypercapnia with acidemia pH < 7.15 7.20
 - Excessively high $P_{PLAT} > 35-45 \text{ cm H}_2\text{O}$
 - Cannulation
 - Bicaval, dual-lumen AvelonTM catheter through the right internal jugular vein (23 or 27 French)
 - Dual insertion through the right IJ and femoral vein
- Venoarterial ECMO (VA ECMO)
 - Primary goal: Support during reversible *cardiac* failure/shock (CS)
 - Bridge to recovery, transplantation, destination therapy, or *decision*
 - Indications
 - Refractory cardiogenic shock^{11,12}
 - Hypotension (SBP<80-90; MAP > 30mmHg from baseline)
 - End-organ dysfunction
 - Cardiac index < $1.8 2.2 \text{ L/min/m}^2$
 - PCWP > 18 mmHg
 - AHA: No specific hemodynamic recommendations¹³

- ESC/EATS: No specific hemodynamic recommendations ¹²
- ELSO: No specific hemodynamic recommendations
- Cannulation
 - Central cannulation to ascending aorta performed in the OR
 - Peripheral cannulation in femoral vessels performed at the bedside
 - Catheter size: 17 Fr arterial, 21 Fr venous
 - Arterial cannula rests in distal aorta
 - Provides retrograde flow
- Improved physiology in cardiogenic shock
 - Decreased pulmonary artery pressure
 - Increased end organ perfusion
 - Increased PaO₂ over VV ECMO
- \circ ECMO flow rates ¹⁴
 - Goal: Arterial pulse pressure $\geq 10 \text{ mmHg}$
 - Begin with $1.5 2L/\min$, titrate to $3-6L/\min$
 - May require vasopressor/inotropic support, goal MAP > 65
- Additional considerations
 - Therapeutic hypothermia rapidly initiated through heat exchanger
 Target core body temp: 32-34°C
 - Anticoagulation required
 - Unfractionated heparinization: body weight adjusted
 - Mechanical Ventilation
 - Lung protective ventilation (6-8cc/kg TV)
 - Monitor for distal limb ischemia

Extracorporeal Life Support assisted CPR (E-CPR)

- Indications
 - Down time is "brief"
 - Condition is reversible coronary occlusion, drug induced, refractory arrhythmias
 - o Condition is amenable to transplantation or revascularization
- In-hospital cardiac arrest
 - Chung et. al (2012): In-patients with acute CS treated with ECMO
 - Study: Prospective observational study of 134 patients
 - STEMI: 37 (27.6%)
 - Non-STEMI: 16 (11.9%)
 - Protocol initiated if C-CPR failed to ROSC after 30 minutes, contacted after 15 minutes
 - On pump within 25-30 min from cardiac arrest
 - STEMI group outcomes significantly better
 - Shin et. al (2011): In-patients with a cardiac cause of arrest
 - Improved survival to discharge
 - Improved 6-month survival with minimal neurologic impairment
 - When CPR > 30 min: E-CPR survival (19.2%) > C-CPR (1.3%)

- Out-of-hospital cardiac arrest
 - Inter-hospital variation in availability and protocol
 - Can be performed in the ED Bellezzo et. al (2012)
 - Case series
 - Staged approach to ECLS initiation
 - 18 patients –8 patients transitioned to ECLS
 - Inclusion
 - Persistent arrest despite standard efforts
 - CS (SBP < 70 mmHg) refractory to medical treatment
 - Exclusion criteria
 - Asystole
 - Prolonged downtime without CPR (> 10 min)
 - Prolonged transport time (>10 min)
 - Prolonged arrest time (>10 min)
 - Suspicion of shock due to sepsis or hemorrhage
 - Pre-existing neurological disease prior to arrest
 - Outcomes
 - Survival to discharge, full neuro recovery: 5 (63%)
 - Non-survivors: mean ECLS time: 48.4 hrs
 - Kagawa et. al (2012)
 - Study: Retrospective review
 - Inclusion: Age 18 74, +/- Vfib, CPR initiated < 15 min from collapse, arrest, No ROSC within 20 min of C-CPR
 - 81 ACS patients
 - 61 received intra-arrest PCI
 - 20 did not receive PCI
 - Cardiac arrest followed by ECMO, PCI, and/or hypothermia
 - 30-day survival: 29%
 - Favorable neurologic outcome: 24%
 - Intra-arrest PCI, time interval from collapse to pump, and in hospital cardiac arrest were associated with 30-day survival
- What does this mean to you?
 - Skeptics (Lyon RM, 2012)
 - ECLS cost prohibits wide-spread adoption
 - Limited data for utilization of VA ECMO in cardiac arrest, and on which patients will benefit
 - o Proponents
 - It is possible, data appears favorable for salvage therapy
 - Goal: Bridge to revascularization or further intervention
 - Algorithmic and team based result required
 - Good patient selection leads to improved outcomes

Selected References

- McNally B, Robb R, Mehta M, et al. Out-of-hospital cardiac arrest surveillance --- Cardiac Arrest Registry to Enhance Survival (CARES), United States, October 1, 2005--December 31, 2010. Morbidity and mortality weekly report Surveillance summaries 2011;60:1-19.
- Kudenchuk PJ, Redshaw JD, Stubbs BA, et al. Impact of changes in resuscitation practice on survival and neurological outcome after out-of-hospital cardiac arrest resulting from nonshockable arrhythmias. Circulation 2012;125:1787-94.
- 3. Belliard G, Catez E, Charron C, et al. Efficacy of therapeutic hypothermia after out-of-hospital cardiac arrest due to ventricular fibrillation. Resuscitation 2007;75:252-9.
- 4. Testori C, Sterz F, Holzer M, et al. The beneficial effect of mild therapeutic hypothermia depends on the time of complete circulatory standstill in patients with cardiac arrest. Resuscitation 2012;83:596-601.
- 5. Sasson C, Rogers MA, Dahl J, Kellermann AL. Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis. Circulation Cardiovascular quality and outcomes 2010;3:63-81.
- 6. Ewy GA. Cardiocerebral resuscitation: the new cardiopulmonary resuscitation. Circulation 2005;111:2134-42.
- 7. Yang CL, Wen J, Li YP, Shi YK. Cardiocerebral resuscitation vs cardiopulmonary resuscitation for cardiac arrest: a systematic review. The American journal of emergency medicine 2012;30:784-93.
- 8. Kellum MJ, Kennedy KW, Barney R, et al. Cardiocerebral resuscitation improves neurologically intact survival of patients with out-of-hospital cardiac arrest. Annals of emergency medicine 2008;52:244-52.
- Dumas F, Cariou A, Manzo-Silberman S, et al. Immediate percutaneous coronary intervention is associated with better survival after out-of-hospital cardiac arrest: insights from the PROCAT (Parisian Region Out of hospital Cardiac ArresT) registry. Circulation Cardiovascular interventions 2010;3:200-7.
- 10. Brodie D, Bacchetta M. Extracorporeal membrane oxygenation for ARDS in adults. The New England journal of medicine 2011;365:1905-14.
- 11. Reynolds HR, Hochman JS. Cardiogenic shock: current concepts and improving outcomes. Circulation 2008;117:686-97.
- Task Force on Myocardial Revascularization of the European Society of C, the European Association for Cardio-Thoracic S, European Association for Percutaneous Cardiovascular I, et al. Guidelines on myocardial revascularization. European heart journal 2010;31:2501-55.
- Peura JL, Colvin-Adams M, Francis GS, et al. Recommendations for the Use of Mechanical Circulatory Support: Device Strategies and Patient Selection: A Scientific Statement From the American Heart Association. Circulation 2012;126:2648-67.
- 14. Chauhan S, Subin S. Extracorporeal membrane oxygenation, an anesthesiologist's perspective: physiology and principles. Part 1. Annals of cardiac anaesthesia 2011;14:218-29.
- 15. Chung SY, Sheu JJ, Lin YJ, et al. Outcome of patients with profound cardiogenic shock after cardiopulmonary resuscitation and prompt extracorporeal membrane oxygenation support. A singlecenter observational study. Circulation journal : official journal of the Japanese Circulation Society 2012;76:1385-92.
- Shin TG, Choi JH, Jo IJ, et al. Extracorporeal cardiopulmonary resuscitation in patients with inhospital cardiac arrest: A comparison with conventional cardiopulmonary resuscitation. Critical care medicine 2011;39:1-7.
- 17. Bellezzo JM, Shinar Z, Davis DP, et al. Emergency physician-initiated extracorporeal cardiopulmonary resuscitation. Resuscitation 2012;83:966-70.
- 18. Kagawa E, Dote K, Kato M, et al. Should we emergently revascularize occluded coronaries for cardiac arrest?: rapid-response extracorporeal membrane oxygenation and intra-arrest percutaneous coronary intervention. Circulation 2012;126:1605-13.
- 19. Lyon RM. Extra-corporeal cardiopulmonary resuscitation Miracle cure or expensive futility? Resuscitation 2012;83:1311-2.