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Clinical use of lactate monitoring in critically ill
patients
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Abstract

Increased blood lactate levels (hyperlactataemia) are common in critically ill patients. Although frequently used to
diagnose inadequate tissue oxygenation, other processes not related to tissue oxygenation may increase lactate
levels. Especially in critically ill patients, increased glycolysis may be an important cause of hyperlactataemia.
Nevertheless, the presence of increased lactate levels has important implications for the morbidity and mortality of
the hyperlactataemic patients. Although the term lactic acidosis is frequently used, a significant relationship
between lactate and pH only exists at higher lactate levels. The term lactate associated acidosis is therefore more
appropriate. Two recent studies have underscored the importance of monitoring lactate levels and adjust treatment
to the change in lactate levels in early resuscitation. As lactate levels can be measured rapidly at the bedside from
various sources, structured lactate measurements should be incorporated in resuscitation protocols.
Review
Introduction
Many variables measured in critically ill patients have
been used to estimate severity of disease, prognosticate
morbidity and mortality, evaluate costs of treatment,
and finally indicate specific treatment and monitor the
adequacy of treatment and its timing. It is unlikely that
one measurement can replace all of these, but in the re-
mainder of this manuscript we will show that lactate
levels may come close. Although in our mind strongly
linked to tissue hypoxia, lactate levels follow many more
metabolic processes not related to tissue hypoxia and,
therefore, subject to many disturbances found in various
clinical situations.

History of lactate
The first description of lactate originates from 1780
when Karl Scheele found lactate in sour milk. It took al-
most 70 years before the German physician-chemist
Joseph Scherer demonstrated the presence of lactate in
human blood. Where Scherer analysed blood drawn
from a young woman who had just died from what we
now call septic shock, it was Carl Folwarczny in 1858
who demonstrated the presence of lactate in the blood
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of a living patient [1]. Araki and Zillessen made an im-
portant observation that has shaped our association of
increased lactate levels and tissue hypoxia. These
authors observed that when they interrupted oxygen
supply to muscles in mammals and birds, lactic acid was
formed and increased [2]. In current practice, lactate is
frequently measured in many kinds of patients, usually
with the goal of detecting tissue hypoxia. However, given
the metabolism of lactate and the effect of acute illness
on glucose metabolism, increased lactate levels can re-
flect more than only tissue hypoxia.

Metabolism of lactate
Lactate is a crucial metabolite in the two main energy
(ATP)-producing processes that power life: glycolysis
and oxidative phosphorylation (OxPhos). Glycolysis, a
process that occurred very early in evolution (approxi-
mately 3 billion years ago), converts glucose into two
molecules of pyruvate with the concomitant generation
of 2 ATP. When atmospheric oxygen levels rose
(1 billion years ago), mitochondria developed to generate
far more energy from glucose (36 ATP molecules for 1
glucose molecule), although following a much more
complicated process (Krebs cycle and OxPhos). Glycoly-
sis and OxPhos steadily metabolize glucose when condi-
tions are stable (Figure 1a). Pyruvate is the molecule that
links these two reactions. Because the rate of glycolysis
can increase two to three orders of a magnitude faster
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Figure 1 Lactate at the cellular level. Usually not oxygen shortage per se, but acute energy requirements is a key determinant of lactate levels.
a Under stable conditions, glucose is converted to pyruvate, generating 2 ATP, and pyruvate is then subsequently fully oxidized to CO2

generating ~36 ATP. b Under stress, glycolysis can increase by a factor 100 to 1,000, provided that glucose is present and pyruvate is converted
to lactate. Irrespective of optimal mitochondrial function and oxygenation, such a rate of pyruvate production will saturate the mitochondrial
tricarboxylic acid cycle and oxidative phosphorylation (OxPhos). c During recovery, lactate is converted back to pyruvate and fully oxidized.
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than OxPhos, glycolysis can briefly provide far more
ATP. Excess pyruvate will rapidly accumulate and is
diverted to lactate in order for glycolysis to proceed
(Figure 1b). During recovery (Figure 1c) lactate is
converted into pyruvate. In both directions this is cata-
lyzed by the ubiquitous enzyme lactate dehydrogenase
Figure 2 Lactate at the physiological level. The flexible use of glucose a
level. All living tissues can consume glucose. From the glucose/lactate poin
lactate because they lack mitochondria, e.g., red blood cells; 2) tissues or ce
circumstances, i.e., all mitochondria-containing cells; 3) tissues that can per
lactate. The liver and the kidneys can only perform gluconeogenesis and e
energy penalty, whereas the other shuttles do not lead to “waste” of energ
(LDH). Thus, when rapidly large amounts of energy are
required, such as under circumstances of cellular stress,
lactate serves as a critical buffer that allows glycolysis to
accelerate. Also, at the level of the organism (Figure 2),
lactate has a similar role as an intermediate fuel that is
readily exchanged between various tissues, facilitated by
nd lactate as fuels on the cellular level is mirrored at the organism
t of view, three sorts of tissues/cells exist: 1) cells that must produce
lls that either produce or consume lactate depending on
form gluconeogenesis and export glucose that is resynthesized from
xport glucose. Only this so-called Cori cycle (denoted by *) carries an
y.
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a family of membrane-bound mono-carboxylate trans-
porters (MCT). Over the past two decades, lactate shut-
tles between astrocytes, neurons, striated muscle, cardiac
muscle, as well as the liver and kidneys have been demon-
strated [3,4]. The long-known Cori cycle can now be con-
sidered one of many lactate shuttles (Figure 2). It should
be noted that whereas the Cori cycle involves energy-
consuming hepatic or renal gluconeogenesis to convert
lactate into glucose, direct interorgan exchange of lactate
itself does not carry an energy penalty and even exogenous
lactate may serve as a suitable substrate [3].

Lactate and acidosis
The metabolism of glucose during tissue hypoxia results
in the production of [lactate]-, ATP, and water [5]. The
production of H+ originates from the hydrolysis of ATP
to ADP. In the presence of oxygen and provided that
OxPhos can keep up with glycolysis, these H+ ions can
be used together with lactate in the OxPhos in the mito-
chondria and acidosis is thus less likely to develop.
Stewart challenged the classic Henderson-Hasselbalch
approach where the acidosis in his approach is the result
of the dissociation of water to maintain acid–base equi-
librium by the addition of the strong ion lactate- to the
circulation [6]. There is however not a strong relationship
between arterial pH and lactate levels. Even at higher lac-
tate levels, only a weak, although significant, correlation
Figure 3 1,745 combined measurements of arterial pH and arterial la
represent suggested definition of lactic acidosis [8]. For lactate levels ≥ 5.0 mm
exists (Figure 3). When evaluating the significance for
patient outcome and the origin of the metabolic acidosis,
it is probably more realistic to use the term: lactate-
associated metabolic acidosis, a combination that also car-
ries the highest risk of mortality [7].

Lactate and tissue hypoxia
Many experimental studies have confirmed the relation-
ship between tissue hypoxia and the generation of lactate
by reducing the components of systemic oxygen delivery
(haemoglobin level, oxygen saturation, and cardiac out-
put) until the extraction of oxygen can no longer main-
tain oxygen availability to the cells to meet their
demands [9,10]. At a critical level of oxygen delivery,
oxygen consumption becomes limited by oxygen deliv-
ery, and this coincides with a sharp increase in lactate
levels. Also, clinical data indicate the relationship be-
tween the presence of this supply dependent state of
oxygen consumption and increased lactate levels similar
to animal studies [11]. In a landmark study, Ronco et al.
showed that this phenomenon also was present in pa-
tients when oxygen delivery decreased until circulatory
arrest during end-of-life care [12]. In addition, Friedman
et al. [13] showed that this phenomenon is present in
the early resuscitation phase of critical illness, suggesting
that resuscitation resolves a state of supply dependent
oxygen consumption and thereby the hyperlactataemia.
ctate in 171 critically ill patients. Horizontal and vertical lines
ol/L, a significant linear regression analysis reveals a R2 = 0.28 (p < 0.001).
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This has been confirmed in an experimental study of
cardiac tamponade by Zhang et al. [10], which showed
that resolution of the supply-dependent state of oxygen
consumption by resolving the tamponade was associated
with an increase in oxygen consumption to baseline
levels and normalisation of lactate levels.
Because the exchange of oxygen takes place in the

microcirculation, alterations in microcirculatory perfusion
also can result in limited oxygen availability. Particularly
in sepsis, microcirculatory derangement or shunting may
lead to insufficient oxygen that is delivered to the cell,
thereby increasing lactate levels [10]. This is indirectly
illustrated by the observation that improving capillary per-
fusion has been correlated to a reduction in lactate levels
in patients with septic shock, independent of changes in
systemic haemodynamic variables [14].
Given the near equilibrium reaction between lactate

and pyruvate and its connection with the cellular oxido-
reduction state, the lactate-to-pyruvate ratio (L:P) provides
additional information as L:P is coupled to the cytoplas-
mic NADH:NAD+ [15-17]. However, it must be noted
that in contrast to lactate, pyruvate is far from trivial to re-
liably measure in clinical practice and therefore its use is
limited in critically ill patients [18].

Lactate production in aerobic metabolism
As discussed earlier, aerobic glucose metabolism to lac-
tate may be a preferred way to rapidly produce signifi-
cant energy amounts. Therefore, stimulating increased
aerobic glucose metabolism has been shown to increase
Figure 4 Lactate levels and LDH levels in a patient with a lymphoma
diagnosis, treatment with chemotherapy was started. The effect of the first
lactate levels in the absence of tissue hypoxia. Most not-
ably, the administration of epinephrine has long been
shown to result in a dose-dependent increase in lactate
levels [19]. Also, stimulation of the phosphofructokinase
enzyme by alkalosis (respiratory and metabolic) has been
shown to increase lactate levels [20]. Clinically often-
used therapeutic interventions also have been shown to
increase aerobic lactate production [21]. The aerobic
production of lactate as an energy source is related to
the very high lactate levels found in patients with lymph-
oma, a phenomenon referred to as the Warburg effect
[22]. When treating the lymphoma, both lactate levels
and LDH respond to chemotherapy (Figure 4). Recently,
it has been shown that the activity of the Na+/K+ pump
system, which requires significant amounts of ATP for
its function, is related to increased lactate levels in both
experimental and clinical conditions [23,24], unrelated
to the presence of tissue hypoxia. Such enhanced gly-
colysis can be triggered by cytokine-mediated uptake of
glucose [25] or catecholamine-stimulated increased Na-
K-pump activity [26,27], supported by both experimental
and clinical studies [23,28]. A recent, still unresolved
discussion, has focused on the presence of mitochondrial
dysfunction in critically ill that could limit pyruvate me-
tabolism (and thus increase lactate levels) in the absence
of limited oxygen availability [29,30].
Infusion of Ringer’s lactate does not hamper the accur-

acy of lactate measurement [31]. Finally, renal replace-
ment therapy eliminates only negligible amounts of
lactate [32], but using lactate-containing buffer solutions
admitted to the ICU because of respiratory failure. Following
and second chemotherapy on lactate and LDH is shown.
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can induce transient hyperlactataemia [33,34]. Other
causes of increased lactate levels (probably) not related
to the presence of tissue hypoxia have been described
[35-39]. In the case of ethylene glycol intoxication,
falsely increased measured lactate levels may result from
an adverse reaction to the lactate electrode [40]. Thus, a
normal lactate level in the laboratory in contrast to a
high level in a point of care device may even be diagnos-
tic in these cases [41].

Clearance of lactate
Corresponding with its versatile functions, the body is
able to clear large lactate loads as shown following the
rapid decrease in lactate levels following exercise or
return of circulation in cardiac arrest. Likewise, the body
is equally adept in clearing very large exogenous loads of
lactate during high-volume continuous veno-venous
hemofiltration [3,33,42].
Several clinical conditions have been associated with

impaired clearance of lactate. First liver dysfunction has
been shown to impair lactate clearance [37,43]. Second,
in patients following cardiac surgery lactate clearance also
may be impaired [44]. Third, in addition to increased glu-
cose metabolism and thus lactate production, sepsis may
impair lactate clearance by the inhibition of the rate limit-
ing enzyme pyruvate dehydrogenase [45]. Although this
enzyme can be stimulated by dichloroacetate, thus forcing
lactate and pyruvate into mitochondrial oxidation, clinical
studies have not shown benefit of this increased lactate
clearance [46].

How and where to measure lactate levels
Blood lactate levels can be measured using various devices
(central laboratory, point-of-care blood gas analysers,
hand-held devices) and generally most devices used at the
bedside have acceptable limits of agreement compared to
the laboratory devices [47,48]. In addition, the sampling
site of the blood (arterial, venous, capillary, etc.) also does
not seem to affect the results much [49-51]. However,
especially when targeting changes in lactate levels in rela-
tively short intervals, it is not appropriate to use devices
and sampling site interchangeably. To prevent an in vitro
rise in blood lactate levels, especially when leucocytosis or
a high haematocrit (red blood cells do not have mitochon-
dria) are present, a maximum turnaround time of 15 min
or storage of the sample on ice is advised [52-54]. Alterna-
tively, tubes containing fluoride, a potent inhibitor of
in vitro glycolysis, are widely used.

Prognosis
Since its first description in humans, increased blood
lactate levels have been related to morbidity and mortal-
ity. In a recent health technology assessment on the use
of lactate levels in critically ill patients, we showed that
both in the emergency department and in the ICU blood
lactate levels have a place in risk-stratification [55]. Not
only one point in time measurements are related to out-
come but also the duration and area under the curve of
increased lactate levels are related to both morbidity
(organ failure) and mortality in different patient groups
[56,57]. In the early phase of resuscitation, lactate levels
seem to be more closely related to outcome than fre-
quently used haemodynamics, including oxygen delivery
and oxygen consumption [58-61]. Moreover, a holistic
view incorporating many parameters may be more
appropriate in early resuscitation [62].

Lactate as a goal of therapy
The latter observations stress the importance to define
adequate resuscitation goals. Although generally believed
to be inadequate, mean arterial pressure is frequently
used as an important diagnostic and goal of therapy in
patients with haemodynamic instability [63]. Given its
strong relationship to the occurrence of inadequate tissue
oxygenation and its long-time established relationship
with morbidity and mortality, lactate levels could repre-
sent a useful goal of initial resuscitation in many clinical
conditions. Until recently, the only known single-centre
clinical trial advocating such lactate-directed therapy was
performed in postcardiac surgery patients [64]. This study
showed a reduction in morbidity but was not powered to
study the effect on mortality. In addition, translating these
findings to a more general and frequently much sicker
population is difficult. However, in 2010, two multicentre
clinical trials were published on the clinical value of
lactate-directed therapy studying a specific group of pa-
tients (sepsis) in the Emergency Department [65] and a
heterogeneous group of patients with increased lactate
levels, not likely to be associated with confounding factors
in lactate metabolism, in the ICU [66].

Lactate-guided therapy: the United States
In a multicentre, open-label, randomized controlled
study, 300 patients were randomized to test the
noninferiority between lactate clearance (≥10%) and
central venous oxygen saturation (ScvO2 ≥70%) as goals
of early resuscitation in patients presenting to the ED
with severe sepsis or septic shock [65]. The intervention
lasted until either all goals were achieved or 6 hours
after start of the study. There were no differences in
treatments administered during the initial 72 hours of
hospitalization. In-hospital mortality in the lactate group
was noninferior to the ScvO2 group. Although one
might conclude that thus both lactate levels and ScvO2

are equally effective as a goal of therapy, the study has
some limitations that prohibit this. First, venous oxygen
saturation might help to differentiate anaerobic from
aerobic hyperlactataemia probably resulting in a different
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treatment [67]. Second, it is questionable whether a 10%
reduction in lactate in 6 hours represents an effective
resuscitation. The study would implicate that a patient is
adequately treated when the initial lactate level of 5.0
mmol/L decreases to 4.5 mmol/L after 6 hours of treat-
ment. Also, a decrease of this magnitude even in the first
hour of treatment is not likely to be associated with
survival as early resuscitation studies have shown that
survivors show an almost 30% decrease in lactate levels
in the first hour [68]. Probably the failure to decrease
lactate levels at all in response to treatment has more
implications for both treatment and prognosis [59,68].
Finally, as only 10% of the patients received either
dobutamine or red blood cell transfusion and fluids and
vasopressors were guided by CVP and MAP in both
groups, the potential difference in protocol actions dir-
ectly attributable to either lactate or ScvO2 was very
small. Therefore, it seems unlikely that a change in this
resuscitation target could increase mortality by 10%, the
noninferiority margin selected for the trial [69].

Lactate-guided therapy: the Netherlands
In a multicentre, open-label, randomized, controlled
trial, 348 patients were randomly allocated to either
lactate-guided treatment (lactate group) or nonlactate-
guided treatment (control group) during the first 8 hours
of ICU stay [66]. In the lactate group, the treatment
goals were a 20% or more decrease in lactate levels per
2 hours and the normalization of ScvO2 (>70%). In
the control group, lactate levels were not available to the
treating physicians during the first 8 hours except for
the admission level required for randomization. An
important addition to the protocol treatment was the
administration of a vasodilator when ScvO2 levels where
normal but lactate levels did not decrease sufficiently.
This is the first study to address this important problem
in the resuscitation of critically ill patients, because nor-
malisation of ScvO2 is generally regarded as a restor-
ation of the balance between oxygen delivery and
oxygen demand that should result in normalization of
lactate levels as demonstrated by Zhang et al. [70]. As-
suming abnormal microcirculatory perfusion in a state
like this that could be improved by the administration of
nitroglycerine [71] led to the addition of this interven-
tion to the protocol treatment. We recently showed that
nitroglycerine improves abnormal tissue oxygenation in
critically ill patients supporting this concept [72]. For a
recent, double-blinded, randomized study by Boerma
et al., [73] nitroglycerin administration was used in
addition to a standard resuscitation protocol in all pa-
tients in the protocol group. This study showed no dif-
ferences in the microcirculation between the two groups
and a trend towards an increased mortality in the proto-
col group. The use of nitroglycerin this study is very
different from its use in the study by Jansen et al. [66].
In the latter study, the use of nitroglycerin was guided
by a clinical problem (no adequate decrease in lactate
levels despite optimal balance between oxygen delivery
and oxygen demand), whereas in the study by Boerma
et al. nitroglycerin also was used in patients with normal
microcirculation, decreasing, or even normal lactate
levels, etc. We therefore do not advocate adding nitro-
glycerin to the standard resuscitation protocols.
Just like in the landmark study on early goal directed

therapy [74], protocol patients received significantly
more fluids during the intervention period, whereas
these patients received less fluid during the subsequent
observation period. In addition, significantly more
patients were treated with vasodilators (predominantly
nitroglycerine) in the protocol group. These differences
in treatment were associated with an almost statistically
significant (p = 0.067), 20% relative reduction in mortal-
ity in addition to a strong statistically significant reduc-
tion in morbidity (duration of mechanical ventilation
and ICU stay, p = 0.006).
However, despite the outcome benefit, the course of

lactate levels in the two groups was similar. This in fact
suggests no causal relationship between the resuscita-
tion therapy and hyperlactataemia. Instead, lactate
might be an epiphenomenon of severity of disease.
By acting as a warning signal, clinicians might have
interpreted hyperlactataemia as a warning that their pa-
tients did not clinically improve or even deteriorate in
the presence of stable haemodynamic parameters. This
could have triggered additional diagnostic and thera-
peutic interventions.
Summarizing, these two recent studies show that

lactate-directed resuscitation therapy has clinical benefit
for critically ill patients, although the exact mechanism
behind it remains uncertain. Lactate measurement prob-
ably should be accompanied by venous saturations mon-
itoring to guide decision-making and therapy.
Conclusions
To understand the importance of an increased lactate
level, it is important not only to consider anaerobic pro-
duction but also aerobic mechanisms and changes in lac-
tate clearance. Despite this complex evaluation, increased
lactate levels usually reflect increased morbidity and high
mortality. In addition, two recent multicentre trials sug-
gest that the use of lactate levels in goal-directed therapy
may improve clinical outcome. These findings confirm
that lactate monitoring is a valuable parameter in the early
resuscitation of critically ill patients.
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